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Abstract—The extension of rough set model is an important
research direction in rough set theory. The aim of this paper is
to present a new extension. At the first, we introduce a pair of
dual intuitionistic fuzzy operators (Θ,Φ). And some important
properties are examined about these these operators. Moreover,
θ-lower and φ-upper approximation operators are defined, by
using the operators, and a novel intuitionistic fuzzy rough set
model is constructed based on an intuitionistic fuzzy equivalence
relation. Furthermore, some valuable properties are obtained in
the model.

Index Terms—Approximation operators; Intuitionistic fuzzy
relation; Intuitionistic fuzzy rough sets; Triangular norm.

I. INTRODUCTION

Rough set theory, proposed by Pawlak [8], [9], is a theory
for the research of uncertainty management in a wide vari-
ety of applications related to artificial intelligence [6]. The
theory has been applied successfully in the fields of pattern
recognition, medical diagnosis, data mining, conflict analysis,
algebra [11], which related an amount of imprecise, vague and
uncertain information.

Atanassov [1] presented intuitionistic fuzzy (IF, briefly) set
in 1986 which is very effective to deal with vagueness. As
a generalization of fuzzy set [13], the concept of IF set has
played an important role in the analysis of uncertainty of data
[5], [7], [12]. Combining IF set theory and rough set theory
may result in a new hybrid mathematical structure for the
requirement of knowledge-handling systems. In recent years,
Various definitions of IF rough set were explored to extend
rough set theory in the IF environment [4], [10].

The purpose of this paper is to investigate intuitionistic
fuzzy rough set model based on a pair of dual intuitionistic
fuzzy implicators, i.e. Φ-upper and Θ-lower approximation
operators defined on the basis of these two implicators. The
rest of this paper is organized as follows. Some preliminary
concepts of IF sets and two IF implications are showed in
Section 2. In Section 3, we propose the concepts and opera-
tions of IF rough sets and discuss their properties. Finally, in
Section 4, we draw the conclusion.

II. PRELIMINARIES

In this section, we introduce some basic notions and prop-
erties related to IF sets. We first review a special lattice on
I2 = [0, 1]2 originated by [3].

Definition 2.1( [3]) Let L∗ = {(α1, α2) ∈ I2|0 ≤ α1 + α2 ≤
1}. The order relation ≤L∗ on L∗ is defined as follows: for
all (α1, α2), (β1, β2) ∈ L∗,

(α1, α2) ≤L∗ (β1, β2)⇔ α1 ≤ β1 and α2 ≥ β2.
Then the relation ≤L∗ is a partial ordering on L∗ and the
pair (L∗,≤L∗) is a complete lattice with the smallest element
0L∗ = (0, 1) and the greatest element 1L∗ = (1, 0). The meet
operator ∧, join operator ∨ and complement operator ∼ on
(L∗,≤L∗) which are linked to the ordering ≤L∗ are, respec-
tively, defined as follows: for all (α1, α2), (β1, β2) ∈ L∗,

(α1, α2) ∧ (β1, β2) = (min(α1, β1),max(α2, β2)),
(α1, α2) ∨ (β1, β2) = (max(α1, β1),min(α2, β2)).
∼ (α1, α2) = (α2, α1).

Meanwhile the order relation ≥L∗ on L∗ is defined as follows:
for all α = (α1, α2), β = (β1, β2) ∈ L∗,

(β1, β2) ≥L∗ (α1, α2)⇔ (α1, α2) ≤L∗ (β1, β2),
α = β ⇔ α ≤L∗ β and β ≤L∗ α⇔ α1 = β1, α2 = β2,
α <L∗ β ⇔ α ≤L∗ β and α 6= β.

Definition 2.2( [1]) Let a set U be fixed. An IF set A on U
is an object having the form

A = {〈x, µA(x), νA(x)〉|x ∈ U},

where µA : U → I and νA : U → I satisfy 0 ≤ µA(x) +
νA(x) ≤ 1 for all x ∈ U ; µA(x) and νA(x) are called the
degree of membership and the degree of non-membership of
the element x ∈ U to A, respectively. The family of all IF
subsets of U is denoted by IF (U). The complement of an IF
set A is defined by ∼ A = {〈x, νA(x), µA(x)〉|x ∈ U}.

Obviously, every fuzzy set A = {〈x, µA(x)〉|x ∈ U} can
be identified with the IF set of the form A = {〈x, µA(x), 1−
µA(x)〉|x ∈ U}. We denote the family of all fuzzy subsets on
U as F (U).

Next, we introduce some basic operations on IF (U) as
follows.
Definition 2.3( [1]) If A,B ∈ IF (U), then,

(1)A ⊆ B ⇔ µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all
x ∈ U ,

(2)A ⊇ B ⇔ B ⊆ A,
(3)A = B ⇔ A ⊆ B and B ⊆ A,
(4)A∩B = {〈x,min(µA(x), µB(x)),max(νA(x), νB(x))|x

∈ U〉},
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(5)A∪B = {〈x,max(µA(x), µB(x)),min(νA(x), νB(x))|x
∈ U〉}.

For α = (α1, α2) ∈ L∗, α̂ = ̂(α1, α2) will be denoted by
the constant IF set: α̂(x) = ̂(α1, α2)(x) = (α1, α2), for all
x ∈ U . In particularly, if a ∈ I we denote â as a constant
fuzzy set, i.e., â(x) = a for all x ∈ U .

For any y ∈ U , IF set 1̂y and ̂1U−{y} are, respectively,
define as follows: for all x ∈ U ,

µ
1̂{y}

(x) =

{
1, if x = y,
0. if x 6= y.

ν
1̂{y}

(x) =

{
0, if x = y,
1. if x 6= y.

µ ̂1U−{y}
(x) =

{
0, if x = y,
1. if x 6= y.

ν ̂1U−{y}
(x) =

{
1, if x = y,
0. if x 6= y.

The IF universe set is 1̂U = ̂(1, 0) = 1̂L∗ = {〈x, 1, 0〉|x ∈
U} and the IF empty set is 1̂∅ = ̂(0, 1) = 0̂L∗ = {〈x, 0, 1〉|x ∈
U}.
Definition 2.4( [14]) A fuzzy triangular norm (briefly fuzzy t-
norm) on I is an increasing, commutative, associative mapping
T : I × I → I satisfying T (1, a) = a for all a ∈ I .

A fuzzy t-conorm (briefly fuzzy t-conorm) on I is an
increasing, commutative, associative mapping S : I × I → I
satisfying T (0, a) = a for all a ∈ I .

A fuzzy t-norm T and a fuzzy t-conorm S on I are said
to be dual with respect to complement operator ∼ , if for all
a, b ∈ I,
S(a, b) =∼ T (∼ a,∼ b) = 1− T (1− a, 1− b).

Definition 2.5( [3]) An IF t-norm T (respectively, t-conorm S)
on L∗ can be defined by fuzzy t-norm T and t-conorm S as
follows: for all α = (α1, α2), β = (β1, β2) ∈ L∗
T (α, β) = (T (α1, β1), S(α2, β2))
S(α, β) = (S

′
(α1, β1), T

′
(α2, β2)).

Definition 2.6 Let T be a fuzzy t-norm on I and S be the
dual of T . For any a, b, c ∈ I , two fuzzy residual implication
by the T and S are defined as:
θ(a, b) = sup{c ∈ I|T (a, c) ≤ b},
φ(a, b) = inf{c ∈ I|S(a, c) ≥ b}.
Now, we define the following two IF implication on L∗:

for all α = (α1, α2), β = (β1, β2) ∈ L∗,
Φ(α, β) = (φ(1− α2, β1), θ(1− α1, β2)),
Θ(α, β) = (θ(1− α2, β1), φ(1− α1, β2)).

Proposition 2.1 Let θ be a fuzzy residual implication and φ be
the dual of θ, for any a, b ∈ I , then φ(∼ a,∼ b) =∼ θ(a, b).

Proof: By the definition of θ and φ, we have

φ(∼ a,∼ b) = inf{c ∈ I|S(∼ a, c) ≥∼ b}
= inf{c ∈ I| ∼ T (a,∼ c) ≥∼ b}
= inf{∼ d ∈ I|T (a, d) ≤ b}
=∼ sup{d ∈ I|T (a, d) ≤ b}
=∼ θ(a, b).

Obviously, it can be seen that Φ(α, β) =∼ Θ(∼ α,∼ β),
for all α = (α1, α2), β = (β1, β2) ∈ L∗.

Proposition 2.2 The binary operation φ and θ enjoy the
following properties: ∀a, b, c ∈ I

(1) φ(0, a) = a, φ(1, a) = 0, φ(a, 0) = 0;
(2) a ≤ b⇔ φ(c, a) ≤ φ(c, b);
(3) a ≤ b⇔ φ(a, c) ≥ φ(b, c);
(4) a ≥ b⇔ φ(a, b) = 0;
(5) φ(∧

i
ai,∨

j
bj) = ∨

i
∨
j
φ(ai, bj);

(6) φ(∨
i
ai,∧

j
bj) = ∧

i
∧
j
φ(ai, bj);

(7) ∨
a∈I

φ(φ(b, a), a) = b;

(8) φ(a, φ(b, c)) = φ(b, φ(a, c));
(9) φ(S(a, b), c)) = φ(a, φ(b, c));
(10) a ≤ φ(b, c)⇔ b ≤ φ(a, c)

and
(1′) θ(1, a) = a, θ(0, a) = 1, θ(a, 1) = 1;
(2′) a ≤ b⇔ θ(c, a) ≤ θ(c, b);
(3′) a ≤ b⇔ θ(a, c) ≥ θ(b, c);
(4′) a ≤ b⇔ θ(a, b) = 1;
(5′) θ(∧

i
ai,∨

j
bj) = ∨

i
∨
j
θ(ai, bj);

(6′) θ(∨
i
ai,∧

j
bj) = ∧

i
∧
j
θ(ai, bj);

(7′) ∧
a∈I

θ(θ(b, a), a) = b;

(8′) θ(a, θ(b, c)) = θ(b, θ(a, c));
(9′) θ(T (a, b), c)) = θ(a, θ(b, c));
(10′) a ≥ θ(b, c)⇔ b ≥ θ(a, c).

Proof: The Proposition can be easily proved by Definition
2.6.

III. CONSTRUCTION OF (Θ,Φ)-IF ROUGH SET

In this section, by using two IF implication Θ and Φ, we
introduce the concept of IF rough set and investigate some
properties of IF rough approximation operators.

Here, we first recall the concept of IF T equivalence
relation.
Definition 3.1( [2]) An IF binary relation R on U is an IF
subset of U × U , namely, R is given by

R = {〈(x, y), µR(x, y), νR(x, y)〉|(x, y) ∈ U × U},
where µR : U ×U → I and νR : U ×U → I , 0 ≤ µR(x, y) +
νR(x, y) ≤ 1 for all (x, y) ∈ U × U. IFR(U × U) will be
used to denote the family of all IF relations on U .
Definition 3.2( [2]) Let R ∈ IFR(U × U), we say that

(1) R is referred to as a reflexive IF relation if for any
x ∈ U , R(x, x) = 1.

(2) R is referred to as a symmetric IF relation if for any
x, y ∈ U , R(x, y) = R(y, x).

(3) R is referred to as a T transitive IF relation if for any
x, y, z ∈ U , R(x, z) ≥L∗ T (R(x, y), R(y, z)).

If R is reflexive, symmetric and T transitive on U , then we
say that R is an IF T equivalence relation on U .
Definition 3.3 Let U be a finite nonempty universe of dis-
course, and R be an IF relation on U . The pair (U,R) is
called a generalized IF approximation space. The Φ-upper and
Θ-lower approximations of a set A ∈ IF (U) with respect to
an IF relation R are respectively defined by
R(A) = {〈x, µR(A)(x), νR(A)(x)〉|x ∈ U},
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R(A) = {〈x, µR(A)(x), νR(A)(x)〉|x ∈ U},
where
µR(A)(x) = ∨

y∈U
φ(1− µR(x, y), µA(y)),

νR(A)(x) = ∧
y∈U

θ(1− νR(x, y), νA(y));

µR(A)(x) = ∧
y∈U

θ(1− νR(x, y), µA(y)),

νR(A)(x) = ∨
y∈U

φ(1− µR(x, y), νA(y)).

The pair (R,R) is called the (Θ,Φ)-IF rough set of A with
respect to (U,R). Let R be an IF T equivalence relation on
U . The pair (U,R) is called an IF approximation space.

The Φ-upper and Θ-lower approximations of a set A ∈
IF (U) with respect to an IF equivalence relation R can be
expressed as: for all x ∈ U ,
R(A)(x) = ∧

y∈U
Θ(R(x, y), A(y));

R(A)(x) = ∨
y∈U

Φ(∼ R(x, y), A(y)).

Let A ∈ IF (U) and R ∈ IF (U × U), ∀x ∈ U , we have
νA(x) ≤ 1− µA(x) and νR(x, y) ≤ 1− µR(x, y), then

µR(A)(x) = ∨
y∈U

φ(1− µR(x, y), µA(y))

= 1− ∧
y∈U

θ(µR(x, y), 1− µA(y))

≤ 1− ∧
y∈U

θ(1− νR(x, y), νA(y))

= 1− νR(A)(x),

so µR(A)(x) + νR(A)(x) ≤ 1. Thus we have proved that
R(A) ∈ IF (U). Similarly, we can verify that R(A) ∈ IF (U).
Based on this conclusion, we call R, R : IF (U) → IF (U)
the Θ-lower and Φ-upper IF rough approximation operators,
respectively.

If R(A) 6= R(A), then the IF set A is an IF rough set on
the IF T equivalence relation.
Remark 3.1 Another natural definitions of the Φ-upper and
Θ-lower approximations of a set A ∈ IF (U) with respect to
an IF T equivalence relation R could be defined by:
R(A) = {〈x, µR(A)(x), νR(A)(x)〉|x ∈ U},
R(A) = {〈x, µR(A)(x), νR(A)(x)〉|x ∈ U};

where
µR(A)(x) = ∨

y∈U
φ(νR(x, y), µA(y)),

νR(A)(x) = ∧
y∈U

θ(µR(x, y), νA(y));

µR(A)(x) = ∧
y∈U

θ(µR(x, y), µA(y)),

νR(A)(x) = ∨
y∈U

φ(νR(x, y), νA(y)).

However, we can verify that R(A) ∈ IF (U) and R(A) ∈
IF (U) are not true by the following example.
Example 3.1 let U = {x1, x2, x3}, A = {(0.6, 0.3),
(0.3, 0.5), (0.9, 0.1)}, and

R =

 (1, 0) (0.88, 0.08) (0.88, 0.08)
(0.88, 0.08) (1, 0) (1, 0)
(0.88, 0.08) (1, 0) (1, 0)

 .

We assume the IF t-norm T as: T (α̂, β̂) = (T (α1, β1),
S(α2, β2)), where α̂ = (α1, α1), β̂ = (β1, β2), T (α1, β1) =
max{0, α1 + β1 − 1}, S(α2, β2) = min{1, α2 + β2}.

It can be found that R is an IF T equivalence relation on
U . And we can calculate the R(A) as follows:
µR(A)(x1) = φ(0, 0.6)∨φ(0.08, 0.3)∨φ(0.08, 0.9) = 0.82,
µR(A)(x2) = φ(0.08, 0.6) ∨ φ(0, 0.3) ∨ φ(0, 0.9) = 0.9,
µR(A)(x3) = φ(0.08, 0.6) ∨ φ(0, 0.3) ∨ φ(0, 0.9) = 0.9;
νR(A)(x1) = θ(1, 0.3) ∧ θ(0.88, 0.5) ∧ θ(0.88, 0.1) = 0.22,
νR(A)(x2) = θ(0.88, 0.3) ∧ θ(1, 0.5) ∧ θ(1, 0.1) = 0.1,
νR(A)(x3) = θ(0.88, 0.3) ∧ θ(1, 0.5) ∧ θ(1, 0.1) = 0.1.
Then R(A) = {(0.82, 0.22), (0.9, 0.1), (0.9, 0.1)}, Obvi-

ously R(A) /∈ IF (U).
Theorem 3.1 Let (U,R) be an IF approximation space, R
and R are the Θ-lower and Φ-upper IF rough approximation
operators defined in Definition 3.3. ∀A,B ∈ IF (U), α =
(α1, α2) ∈ L∗, Then

(1) R(∼ A) = ∼R(A), R(∼ A) =∼ R(A).
(2) R(A) ⊆ A ⊆ R(A).
(3) R(A∩B) = R(A)∩R(B), R(A∪B) = R(A)∪R(B).
(4) A ⊆ B ⇒ R(A) ⊆ R(B) and R(A) ⊆ R(B).
(5) R(A∪B) ⊇ R(A)∪R(B), R(A∩B) ⊆ R(A)∪R(Y ).
(6) R(α̂) = α̂, R(α̂) = α̂.

In particular, R(∅) = R(∅) = ∅, R(U) = R(U) = U .
(7) R(R(A)) = R(A), R(R(A)) = R(A).

Proof: (1) From Definition 3.3 and Proposition 2.1, ∀x ∈
U we have

µR(∼A)(x) = ∧
y∈U

θ(1− νR(x, y), µ(∼A)(y))

= ∧
y∈U

θ(1− νR(x, y), νA(y)) = νR(A)(x),

νR(∼A)(x) = ∨
y∈U

φ(1− µR(x, y), ν(∼A)(y))

= ∨
y∈U

φ(1− µR(x, y), µA(y)) = µR(A)(x).

Thus, R(∼ A) = ∼R(A),
Similarly, we can obtain that R(∼ A) =∼ R(A).
(2) ∀x ∈ U , we have

µR(A)(x) = ∧
y∈U

θ(1− νR(x, y), µA(y))

≤ θ(1− νR(x, x), µA(x))

= θ(1, µA(x)) = µA(x)

νR(A)(x) = ∨
y∈U

φ(1− µR(x, y), νA(y))

≥ φ(1− µR(x, x), νA(x))

= φ(0, νA(x)) = νA(x).

Thus, R(A) ⊆ A.
A ⊆ R(A) follows immediately from conclusion R(A) ⊆ A

and the dual properties.
(3) ∀x ∈ U , we have

µR(A∩B)(x) = ∧
y∈U

θ(1− νR(x, y), µ(A∩B)(y))

= ∧
y∈U

θ(1− νR(x, y), µ(A)(y) ∧ µ(B)(y))

=[ ∧
y∈U

θ(1− νR(x, y), µA(y))] ∧ [ ∧
y∈U

θ(1− νR(x, y), µB(y))]

=µR(A)(x) ∧ µR(B)(x),
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νR(A∩B)(x) = ∨
y∈U

φ(1− µR(x, y), ν(A∩B)(y))

= ∨
y∈U

φ(1− µR(x, y), ν(A)(y) ∨ ν(B)(y))

=[ ∨
y∈U

φ(1− µR(x, y), νA(y))] ∨ [ ∨
y∈U

φ(1− µR(x, y), νB(y))]

=νR(A)(x) ∨ νR(B)(x).

Then R(A ∩B) = R(A) ∩R(B).
Similarly, we can get that R(A ∪B) = R(A) ∪R(B).
(4) Since A ⊆ B, i.e., µA(x) ≤ µB(x), νB(x) ≤ νA(x) for

all x ∈ U , we have

µR(A)(x) = ∧
y∈U

θ(1− νR(x, y), µA(y))

≤ ∧
y∈U

θ(1− νR(x, y), µB(y)) = µR(B)(x),

νR(A)(x) = ∨
y∈U

φ(1− µR(x, y), νA(y))

≥ ∨
y∈U

φ(1− µR(x, y), νB(y)) = νR(B)(x)

Then R(A) ⊆ R(B).
Similarly, we can acquire that R(A) = R(B).
(5) It follows immediately from (4).
(6) Since ∀x ∈ U ,α̂(x) = α = (α1, α2), then we have

µR(α̂)(x) = ∧
y∈U

θ(1− νR(x, y), µ
α̂

(y))

= ∧
y∈U

θ(1− νR(x, y), α1)

= θ( ∨
y∈U

(1− νR(x, y)), α1) = θ(1, α1) = α1,

νR(α̂)(x) = ∨
y∈U

φ(1− µR(x, y), ν
α̂

(y))

= ∨
y∈U

φ(1− µR(x, y), α2)

= φ( ∧
y∈U

(1− νR(x, y)), α2) = φ(0, α2) = α2.

Thus R(α̂) = α̂.
Similarly, we can achieve that R(α̂) = α̂.
Take α̂ = ∅ in the above proof, then we have R(∅) =

R(∅) = ∅, take α̂ = U , we get R(U) = R(U) = U .
(7) By (2), we can easily know that R(R(A)) ⊆ R(A) and

R(A) ⊆ R(R(A)). ∀x ∈ U , we have

µR(R(A))(x) = ∧
y∈U

θ(1− νR(x, y), µR(A)(y))

= ∧
y∈U

θ(1− νR(x, y), ∧
z∈U

θ(1− νR(y, z), µA(z)))

= ∧
y∈U

∧
z∈U

θ(1− νR(x, y), θ(1− νR(y, z), µA(z)))

= ∧
y∈U

∧
z∈U

θ(T (1− νR(x, y), 1− νR(y, z)), µA(z))

≥ ∧
z∈U

θ(1− νR(x, z), µA(z)) = µR(A)(x),

νR(R(A))(x) = ∨
y∈U

φ(1− µR(x, y), νR(A)(y))

= ∨
y∈U

φ(1− µR(x, y), ∨
z∈U

φ(1− µR(y, z), νA(z)))

= ∨
y∈U

∨
z∈U

φ(1− µR(x, y), φ(1− µR(y, z), νA(z)))

= ∨
y∈U

∨
z∈U

φ(S(1− µR(x, y), 1− µR(y, z)), νA(z))

≤ ∨
z∈U

φ(1− µR(x, z), νA(z)) = νR(A)(x)

So that, R(R(A)) ⊇ R(A). Thus R(R(A)) = R(A).

Moreover, the formula R(R(A)) = R(A) can be examined
immediately from conclusion R(R(A)) = R(A) and the dual
properties.

We observe from Theorem 3.1(7) that R(R(A)) = R(A),
R(R(A)) = R(A). But R(R(A)) = R(A) and R(R(A)) =
R(A) are not hold.
Example 3.2 Consider the IF approximation space of Example
3.1. we can calculate R(R(A)) and R(A) as follows:
µR(A)(x1) = φ(0, 0.6)∨φ(0.12, 0.3)∨φ(0.12, 0.9) = 0.78,
µR(A)(x2) = φ(0.12, 0.6) ∨ φ(0, 0.3) ∨ φ(0, 0.9) = 0.9,
µR(A)(x3) = φ(0.12, 0.6) ∨ φ(0, 0.3) ∨ φ(0, 0.9) = 0.9;
µR(µ

R(A)
)(x1) = θ(1, 0.78) ∧ θ(0.92, 0.9) ∧ θ(0.92, 0.9) =

0.78,
µR(µ

R(A)
)(x2) = θ(0.92, 0.78)∧θ(1, 0.9)∧θ(1, 0.9) = 0.86,

µR(µ
R(A)

)(x3) = θ(0.92, 0.78)∧θ(1, 0.9)∧θ(1, 0.9) = 0.86.

Therefore, R(R(A)) 6= R(A).
Theorem 3.2 Let (U,R) and (U, S) be two IF approximation
spaces, S ⊆ R and A ∈ IF (U), then R(A) ⊆ S(A), S(A) ⊆
R(A).

Proof: Since S ⊆ R, i.e., µS(x, y) ≤ µR(x, y),
νR(x, y) ≤ νS(x, y), for all x, y ∈ U , then ∀x ∈ U , we
have

µR(A)(x) = ∧
y∈U

θ(1− νR(x, y), µA(y))

≤ ∧
y∈U

θ(1− νS(x, y), µA(y)) = µS(A)(x),

νR(A)(x) = ∨
y∈U

φ(1− µR(x, y), νA(y))

≥ ∨
y∈U

φ(1− µS(x, y), νA(y)) = νS(A)(x).

Thus R(A) ⊆ S(A).
On the other hand, S(A) ⊆ R(A) follows immediately from

R(A) ⊆ S(A) and the dual properties.
Theorem 3.3 Let (U,R) be an IF approximation space, for
any x, y ∈ U , α = (α1, α2) ∈ L∗.
R(Θ(1

{̂y}
, α̂))(x) = R(Θ(1

{̂x}
, α̂))(y)= Θ(R(x, y), α),

i.e.,
µ
R(Θ(1

{̂y}
,α̂))

(x) = µ
R(Θ(1

{̂y}
,α̂))

(x)

= θ(1− νR(x, y), α1)
ν
R(Θ(1

{̂y}
,α̂))

(x) = ν
R(Θ(1

{̂y}
,α̂))

(x)

= φ(1− µR(x, y), α2)
R(Φ( ̂1U−{y}, α̂))(x) = R(Φ( ̂1U−{x}, α̂))(y)

= Φ(∼ R(x, y), α),
i.e.,
µ
R(Φ( ̂1U−{y},α̂))

(x) = µ
R(Φ(1U−{x},α̂))

(y)

= φ(1− µR(x, y), α1),
ν
R(Φ( ̂1U−{y},α̂))

(x) = ν
R(Φ(1U−{x},α̂))

(y)

= θ(1− νR(x, y), α2).
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Proof: From the definition of R and Proposition 2.2, we
have

µ
R(Φ( ̂1U−{y},α̂))

(x)

= ∨
z∈U

φ(1− µR(x, z), µ
φ( ̂µ1U−{y} ,α̂1)

(z))

= φ(1− µR(x, y), µ
φ( ̂µ1U−{y} ,α̂1)

(y))

∨ ( ∨
z 6=y

φ(1− µR(x, z), µ
φ( ̂µ1U−{y} ,α̂1)

(z)))

= φ(1− µR(x, y), α1) ∨ ( ∨
z 6=y

φ(1− µR(x, z), 0))

= φ(1− µR(x, y), α1),

ν
R(Φ( ̂1U−{y},α̂))

(x)

= ∧
z∈U

θ(1− νR(x, z), ν
θ( ̂ν1U−{y} ,α̂2)

(z))

= θ(1− νR(x, y), ν
θ( ̂ν1U−{y} ,α̂2

(y))

∧ ( ∧
z 6=y

θ(1− νR(x, z), ν
θ( ̂ν1U−{y} ,α̂2

(z)))

= θ(1− νR(x, y), α2) ∧ ( ∧
z 6=y

θ(1− νR(x, z), 1))

= θ(1− νR(x, y), α2).

Then, R(Φ( ̂1U−{y}, α̂))(x) = Φ(∼ R(x, y), α). By the sym-
metry of R, it is immediately to obtain R(Φ( ̂1U−{x}, α̂))(y)

= Φ(∼ R(x, y), α). Thus R(Φ( ̂1U−{y}, α̂))(x) = Φ(∼
R(x, y), α)= R(Φ( ̂1U−{x}, α̂))(y).

And R(Θ(1
{̂y}
, α̂))(x) = R(Θ(1

{̂x}
, α̂))(y) =

Θ(R(x, y), α) can be got direct from the above conclusion
and the dual properties.
Theorem 3.4 Let (U,R) be an IF approximation space, for
any α = (α1, α2) ∈ L∗. R(Θ(α̂, A)) = Θ(α̂, R(A)), i.e.,
µ
R(Θ(α̂,A))

= θ(1− α2, µR(A)),

ν
R(Θ(α̂,A))

= φ(1− α1, νR(A)).
R(Φ(α̂, A)) = Φ(α̂, R(A)), i.e.,
µ
R(Φ(α̂,A))

= φ(1− α2, µR(A)),

ν
R(Φ(α̂,A))

= θ(1− α1, νR(A)).
Proof: From the definition of R and Proposition 2.2, for

any x ∈ U , we have

µ
R(Φ(α̂,A))

= ∨
y∈U

φ(1− µR(x, y), µ
Φ(α̂,A)

(y))

= ∨
y∈U

φ(1− µR(x, y), φ(1− α2, µA)(y))

= φ(1− α2, ∨
y∈U

φ(1− µR(x, y), µA)(y))

= φ(1− α2, µR(A)),

ν
R(Θ(α̂,A))

= ∧
y∈U

θ(1− νR(x, y), ν
Θ(α̂,A)

(y))

= ∧
y∈U

θ(1− νR(x, y), θ(1− α1, νA)(y))

= θ(1− α1, ∧
y∈U

θ(1− νR(x, y), νA)(y))

= θ(1− α1, νR(A)),

Then, R(Φ(α̂, A)) = Φ(α̂, R(A)).
R(Θ(α̂, A)) = Θ(α̂, R(A)), follows immediately from the

above conclusion and the dual properties.

IV. CONCLUSION

In this paper, we defined the intuitionistic fuzzy rough
sets by the Φ-upper and Θ-lower approximation operators,
which is a natural extension of fuzzy rough sets. And some
main properties of the intuitionistic fuzzy rough approximation
operators had been given. Meanwhile, we have proved another
natural extension of fuzzy rough sets is unreasonable in
this paper. In further research, we will study the axiomatic
approach of intuitionistic fuzzy rough sets.
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